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Measurements of spatiotemporal dynamics in a 
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We present an approach combining temporal dynamical systems methods with newly 
proposed spatial coupling measures - namely, coherence and cross-bicoherence - to 
identify and quantitatively describe low-dimensional dynamics in transitional open 
flows. The approach is used to describe a forced mixing layer as a low-dimensional 
temporal dynamical system and interpret its transitional vortex dynamics. 

Experiments were performed in an initially laminar plane mixing layer inside an 
anechoic chamber using forcing of the fundamental instability only ; the forcing 
frequency and amplitude are used as control parameters. Dynamical invariants 
calculated show that vortex roll-up and the feedback-driven first two pairing dynamics 
are well-described by one periodic and at least two low-dimensional chaotic attractors ; 
a phase diagram delineating such dynamical states in the control parameter space is 
presented. The large spatial extents of these feedback-sustained states (verified using 
coherence and cross-bicoherence), spanning many instability wavelengths downstream, 
indicate spatial coupling; feedback has also been experimentally verified. At a fixed 
forcing frequency, as the forcing amplitude is decreased, the spatially coupled, periodic 
second pairing dynamics becomes chaotic and spatiotemporal (inferred from decay of 
coherence and cross-bicoherence) ; the dynamics in the domain that includes the first 
pairing, however, remains temporal. This loss of spatial coupling is accompanied by a 
sudden increase in the attractor dimension, and suggests spatiotemporal chaos. The 
combination of dynamical systems theory and spatial measures seems to be a 
promising approach to probe spatiotemporal dynamics in other open flows as well. 

1. Introduction 
The dynamical systems (DS) approach has been applied successfully to identify low- 

dimensional temporal dynamics in closed flows (e.g. Dubois 1982; Brandstater et al. 
1983). The problem with a DS description of technologically significant open flows 
(such as jets, mixing layers and boundary layers) is that their convectively unstable 
nature makes them sensitive to external noise. (Noise includes disturbances originating 
external to the domain of interest, e.g. wind tunnel and laboratory room acoustics, 
blower-originated pulsations.) Consequently, spatially amplified random noise may 
not be distinguishable from intrinsic low-dimensional chaos (Huerre 1987), and 
standard DS tools to detect temporal chaos may fail (Deissler & Kaneko 1987). On the 
other hand, flows with global instabilities are readily amenable to the temporal DS 
approach. In the following, we first review the concepts of ‘local’ and ‘global’ 
instabilities in spatially developing flows. We then describe the limitations in using 
these ideas to probe open flows and motivate the need for a new approach, and then 
explain our approach. 

Huerre & Monkewitz (1990, hereinafter referred to as HM) studied two types of 



72 S. Narayanan and F, Hussain 

local instability : absolute and convective. Disturbances in an absolutely unstable flow 
dominate the dynamics at their origin and eventually everywhere in the domain, while 
in convectively unstable flows, disturbances are swept away from the origin. HM then 
studied the instability of a weakly non-parallel base flow extending over a ‘large’ 
region (over a few instability wavelengths), namely, a ‘global instability’. In the 
absence of long-range pressure feedback (e.g. edge-tone flows), they concluded that the 
existence of an unstable global mode ‘necessarily implied a finite region of absolute 
instability’ (see also Monkewitz, Huerre & Chomaz 1993). In contrast, flows that are 
convectively unstable everywhere were said to be globally stable wherein no self- 
sustained states arise, e.g. channel flows. Global instability was claimed to result in self- 
excited oscillations (at a global frequency) of a large flow region. An equivalent 
viewpoint regards the global mode as a time-periodic solution of the linearized 
disturbance equations for a non-parallel base flow. In the experimental study of a near 
wake, Mathis, Provansal & Boyer (1984) used the Stuart-Landau equation to 
describe the oscillation amplitude. Schumm, Berger & Monkewitz (1994) also 
conducted similar studies, but admit that the frequency and the growth rate of the 
global mode obtained from experiments could not be verified using the theoretical 
analyses of HM and Monkewitz et aE. (1993) owing to violation of the weakly non- 
parallel flow assumption in the laboratory flow. Global modes were also inferred 
experimentally in non-uniform density jets (Monkewitz et al. 1990) where the 
occurrence of an absolute instability was well known. However, it was only speculated 
that convectively unstable, uniform-density jets sustained a global mode (upon small 
forcing) related to a ‘slightly damped jet-column mode’ (HM). 

Implicit in global instability analyses is the dominance of a single mode in the flow 
domain. The occurrence of various instabilities in some open shear flows causes 
different frequencies to dominate at different spatial locations, e.g. fundamental 
(Kelvin-Helmholtz) and successive subharmonic (nonlinear) instabilities in a mixing 
layer or a jet cause vortex formation and their interactions, respectively, at different 
locations (with different timescales). The presence of multiple frequencies (none of 
which dominates everywhere) suggests that such open flows are incapable of sustaining 
global modes. Furthermore, since open flows such as jets and boundary layers are 
highly non-parallel, global instability analyses for these flows are not feasible. In fact, 
HM claim that a breakdown of the weakly non-parallel assumption ‘would preclude 
any possible connection between local and global instability properties ’. Consequently, 
the concept of global instability is applicable only to a narrow class of flows which are 
weakly (spatially) inhomogeneous and typically absolutely unstable. Yet, the most 
interesting open flows (from the technological point of view) are spatially inho- 
mogeneous (highly non-parallel), in addition to being locally convectively unstable. 
Establishing definite relations between local dynamics and dynamics observed over 
large spatial extents in open flows would allow exploration of low-dimensional 
dynamics via the nonlinear DS approach and may hence permit control of these 
seemingly complex spatiotemporal flows. In this regard, although the study of global 
instabilities has improved our understanding of some spatially developing flows (e.g. 
wakes), this approach is inadequate for describing technologically significant open 
flows such as jets, mixing layers and boundary layers. 

Temporal DS techniques can be used to detect low-dimensional chaos in open flows 
with global modes, e.g. in the absolutely unstable near wake of a cylinder (Van Atta 
& Gharib 1987). However, since disturbances in a locally convectively unstable flow 
advect and leave their origin (point of receptivity) susceptible to new disturbances, such 
a flow is extremely sensitive to external noise. Dynamical invariants, extracted from 
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single-point measurements, in such flows can be used at most to predict the local 
dynamical state (i.e. in a region much smaller than the domain of interest). To fully 
describe a convectively unstable flow, it is necessary to sample data simultaneously at 
several locations spanning the entire flow domain. Despite this limitation, Bonetti & 
Boon (1989) (in a Poiseuille-profile jet) and Williams-Stuber & Gharib (1990) (in an 
airfoil wake) used DS analyses of single-point measurements to describe the open 
flows in terms of low-dimensional temporal attractors. No attempt was made by those 
authors to study the spatial extent of the identified dynamical states; such an 
experimental description is not useful if the low-dimensional states capture flow 
organization which is only local. To resolve ambiguities in applying DS tools to open 
flows, it is necessary to start with a prototypical flow which is otherwise well- 
documented through conventional measures and is of substantial fundamental and 
technological interest. We have thus chosen to study a plane mixing layer (ML) owing 
to its simple features (e.g. single lengthscale O,, the exit momentum thickness) and 
extensive studies as a reference flow (see, for example, Oster & Wygnanski 1982; Ho 
& Huerre 1984). We now present our approach to analyse low-dimensional dynamics 
in open flows. 

Our approach is motivated by the fact that convectively unstable open flows can also 
display intrinsic dynamics, namely, via feedback. Strong feedback may come from flow 
interaction with solid boundaries (e.g. the jet edge-tone phenomenon (Brown 1937) ; 
the shear-layer tone phenomenon (Hussain & Zaman 1978)), dynamical events within 
the flow itself such as vortex roll-up and pairing (e.g. experiments of Dimotakis & 
Brown (1976) and simulations of Grinstein, Oran & Boris (1991)) or could be 
electronically imposed (Reisenthel 1988). Broze & Hussain (1 994, hereinafter referred 
to as BH) justified a temporal DS description of a forced axisymmetric jet (an open 
flow) with a conceptual model incorporating the feedback due to vortex pairings. 

We propose that an open flow with spatial coupling behaves as a temporal 
dynamical system. Coupling is the mutual dependence of the dynamics at spatially 
separated locations; how the dynamics at one location influences that at another will 
depend on the system (for discussions on newly-proposed coupling measures see $3). 
When coupling is strong over large distances (compared to the characteristic 
lengthscale), the flow is said to be spatially coupled. In contrast, when the dynamics at 
two locations evolve independent of each other, i.e. the coupling distance is comparable 
to or less than the characteristic lengthscale, there is no spatial coupling. For open 
flows, spatial coupling means that the initiation and evolution of local instabilities at 
distant locations depend on each other rather than on external perturbations; i.e. the 
coupling is intrinsic. In the mixing layer (studied here), coupling occurs through 
advection of linear (Kelvin-Helmholtz) and successive nonlinear (subharmonic 
resonance) disturbances together with upstream propagating feedback from vortex 
pairings (to the flow origin), which excites subsequent instabilities (this is discussed 
further in $2); of course, for intrinsic dynamics, the feedback must override the 
influence of background disturbances at the origin (point of receptivity). A decrease in 
the amplitude of feedback perturbations will allow the instabilities to be driven by 
noise (i.e. extrinsic dynamics) and hence result in the loss of spatial coupling. As a 
result of spatial coupling, the effects of several instabilities can be sensed at any 
location; i.e. the flow can be described using information from a single probe 
independent of the location. Thus, one can employ the temporal DS approach. While 
the lack of spatial coupling renders such a description useless, no simple approach to 
describe the resulting spatiotemporal dynamics is evident yet. As discussed before, 
open flows involving different types of local instability cannot be studied using the 
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Acoustic excitation Probe 1 

FIGURE 1 .  Schematic of a plane mixing layer showing the coordinate system and the excitation 
method; the two probes are separated by Az to minimize interference. 

concept of global instabilities. We overcome this limitation and provide an 
experimentally verifiable approach for describing low-dimensional dynamics in a wider 
range of open flows. 

The present experimental study aims : (i) to describe intrinsic low-dimensional 
dynamics in a prototypical open flow, and (ii) to analyse its spatiotemporal dynamics, 
in terms of the physical-space vortex dynamics, without necessitating full flow field 
velocity data. For this, we propose to combine temporal DS analyses with spatial 
measurements (of coherence and cross-bicoherence). 

The paper is organized as follows. In $2, low-dimensional dynamics in the control 
parameter space (frequency and forcing amplitude) are described and depicted in a 
phase diagram, transitions between dynamical states are discussed, and evidence of 
dominant feedback is provided. Two distinct, periodic and chaotic, states are studied 
in further detail since they cover a major portion of the phase diagram. The unforced 
flow in the low-noise, anechoic environment is also examined briefly as a reference 
state. In $ 3  and $4, current methods to study spatiotemporal dynamics are surveyed, 
the need for new spatial measures is established, and coherence and cross-bicoherence 
are proposed as appropriate measures of coupling (instead of correlation, used 
conventionally). These measures are used to determine the spatial extents over which 
the periodic and chaotic dynamics are representative of the flow, and to detect 
spatiotemporal dynamics. To examine the effect of spatial coupling on invariant 
measures of temporal attractors in the flow, the spatial development of the dimension 
and the largest Lyapunov exponent for the periodic and the chaotic states is discussed 
in $5.  Concluding remarks are presented in $6. 

The experiments were performed in a carefully documented, quiet (free-stream 
turbulence intensity u’/ U,  d 0.1 YO), initially laminar, plane ML facility in the anechoic 
chamber at the University of Houston Aerodynamics and Turbulence Laboratory. The 
flow studied is schematically shown in figure 1, and the facility details are documented 
in Appendix A. Single-frequency forcing (at 3 12 Hz) was provided (acoustically) at the 
ML lip and was chosen from a band of frequencies supported by the excitation 
chamber (see transfer function in figure 22). 
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FIGURE 2.  Phase diagram for the forced mixing layer. The dashed lines roughly indicate the 
boundaries for the onset of SP and SDP; note that minimum uf is required to achieve SP and SDP 
at StOe x 0.01 15. The shading denotes the frequency band observed in the unforced flow. 

2. Temporal dynamics of the mixing layer 
2.1. The phase diagram 

Convectively unstable local dynamics in the ML involve vortex roll-up and pairings of 
these vortices. We chose a measurement location (x z 130 19,) where the probe senses 
footprints of all important events: roll-up (x = 50-60 de) ,  first pairing (x z 110-130 0,) 
and second pairing (x z 200-220 0,); note that the precise roll-up and pairing locations 
depend upon the forcing frequency and amplitude, which control the growth rate and 
saturation location of the unstable modes. The probe's transverse location corresponds 
to U ( y ) /  U ,  z 98 YO, where a clear imprint of large-scale events is obtained but effects 
due to small scales or internal vorticity laminations (within a vortex) are essentially 
avoided; a long-prong single-wire probe was used to avoid probe-induced shear layer 
tone (Hussain & Zaman 1978). The control parameters used are: the Strouhal number 
St,( (z .fez 8,/ U,, U,  = exit velocity and f , ,  = excitation frequency) and the non- 
dimensional forcing amplitude af (= u;/ U,, the normalized peak r.m.s.-velocity 
fluctuation at.&, recorded near the ML origin, x/B, M 4); U, was varied to change St,, 
in the linear instability range predicted by Michalke (1965). Velocity signals were 
analysed for the ranges: 0.008 O/O 6 af < 1 YO and 0.006 < St,, 6, 0.02. We use mutual 
information (MI), phase portraits, Poincare sections, correlation dimension v and 
largest Lyapunov exponent h (in bits per orbit (b.p.o.), normalized by the subharmonic 
period) to describe temporal attractors. All Poincare sections show both positive and 
negative crossings on a plane inclined at 45" to the [u(t) ,  u ( ~ + T ) ]  phase space axes. 
Computations of the invariant measures are briefly described in Appendix B. 

The periodic state, stable double pairing (SDP), is found at all St,, studied, for 
sufficiently high af (see figure 2). At low af ,  two chaotic states, the quarterharmonic 
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chaotic attractor (QCA) and the subharmonic chaotic attractor (SCA), are found for 
two different ranges of St,, (above and below 0.01 15, respectively). For intermediate uf, 
the stable pairing (SP) attractor is found with periodic/chaotic dynamics (discussed in 
$2.1.2). Interestingly, at St,, z 0.01 15, the af required to achieve SP and SDP has a 
minimum (this supportive evidence of feedback will be discussed in 62.3); the shaded 
area in figure 2 denotes the dominant instability frequency band (0.01 < Stfe  < 0.013) 
in an unforced ML (discussed in $2.3). Since the dynamics is periodic at high af and 
becomes chaotic with decreasing a f ,  we describe these states as they occur for 
decreasing af  and then analyse the transitions between them. 

2.1.1. SDP 
This state occurs for relatively high excitation amplitudes, 0.15 % < af (see figure 2)  ; 

note that only the fundamental instability is forced. The vortex dynamics involve 
forced periodic roll-up and self-excited periodic first pairing (of rolled-up vortices) and 
second pairing (of once-paired vortices); pairing phenomena have been studied 
previously (Winant & Browand 1974; Zaman & Hussain 1980). These events result in 
spectral peaks (figure 3b) at the fundamental j ,  the subharmonic if and the 
quarterharmonic i f ;  even if, indicating third pairing, is detected farther downstream. 
Proximity of the probe to the first pairing location results in a higher subharmonic 
amplitude than that of the quarterharmonic or the fundamental, as is also evident from 
the time trace (figure 3 a )  which has a dominant subharmonic period. The subharmonic 
has a broader spectral base than the quarterharmonic, indicating slight subharmonic 
phase jitter (jitter refers to variations in the instantaneous phase at a fixed x ) ;  
quarterharmonic phase jitter also results in a similar broadening of the quarter- 
harmonic in a spectrum recorded farther downstream. Alternating peak values in 
the time trace suggest transverse displacement of vortex centres (see inset of figure 3 a), 
indicating initiation of the second pairing. 

The streamwise evolutions of peak amplitudes of significant frequencies (f ,  $A i f )  in 
the SDP spectrum are shown in figure 3 (c). The exponential growth at all frequencies 
for x / H ,  < 40 is followed by fundamental saturation, causing roll-up, at x/O, z 50 and 
a concomitant increase in the subharmonic growth rate due to nonlinear interactions 
with the fundamental (the subharmonic resonance phenomenon; see Kelly 1967). The 
resonance results in the first pairing by x/B, z 110, inferred from the subharmonic 
saturation. Meanwhile, the quarterharmonic growth rate is modified owing to a similar 
resonance with the subharmonic. In the region 130 < x/8, d 170, the quarterharmonic 
growth suppression appears to be due to local quarterharmonic phase jitter. The 
configuration of pairing vortices (which governs the instantaneous quarterharmonic 
phase at a given x) during the second pairing is extremely sensitive to ambient 
perturbations, making it impossible to maintain precisely the same configuration (i.e. 
the same phase) at a given .'i during each pairing; consequently, the second pairing 
process is not perfectly periodic. However, farther downstream (when vortices nearly 
complete pairing) this sensitivity is of little consequence, and resonant quarterharmonic 
growth resumes and culminates in a complete second pairing by x/H, z 220. That is, 
the growth rate is most sensitive to phase during pairing than it is before or after, and 

FIGURE 3. For SDP: (a) the time trace recorded at x/O, z 120 and U ( y ) / U e  x 98%, for af z 0.2% 
and Sfop z 0.012, displays the dominance of the subharmonic + /and  the quarterharmonic tJ; the 
relative transverse displacement of pairing vortices is also sketched ; (6) the power spectrum shows 
peaks atJ'(due to roll-up), $.f(due to the first pairing) and +f(due to the second pairing); and (c) the 
streamwise evolutions of peak-amplitudes at ,k i f  and i f  indicate complete vortex roll-up by 
x/Oe z 5 5 ,  complete first pairing by x / O e  z 110, and complete second pairing by x/Oe z 220. 
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FIGURE 4. For SDP: (a) the phase portrait shows the period-2 limit cycle; (b) magnified view of the 
Poincare section shows four distinct clusters corresponding to crossings of the limit cycle; and (c) 
correlation dimension v as a function of distance r in phase-space for different embedding dimensions 
m shows good convergence for v at m = 3 (see inset). 
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FIGURE 5. For SP: ( a )  time trace at x/O, 120 and V ( y ) / U ,  = 98%, for a f x  0.04% and 
St#? 2 0.012, shows dominance of the subharmonic and an aperiodic quarterharmonic; and (6) the 
power spectrum shows fundamenta1.L subharmonic i fand  quarterharmonic ifpeaks on a broadband 
pedestal, suggesting chaotic modulations. 

even forcing at high af cannot eliminate the jitter; this jitter will be analysed further in 
$83.2.1, 4.1 and 5.1. 

The phase portrait (figure 4 a )  is obtained using time-delayed reconstruction with a 
delay corresponding to the first minimum of the MI (Fraser & Swinney 1986). The 
period-2 limit cycle has scatter that can be attributed to slight changes in successive 
pairing locations causing weak modulatioils of the subharmonic/quarterharmonic. 
The Poincare section for SDP (magnified in figure 4b) has clusters separated by at least 
0.6 m s-' (much larger than the maximum scatter, which is within 0.08 m s-'), 
indicating limit cycle behaviour at large phase-space scales. Note that the magnified 
view of the clusters reveals no pattern, suggesting that the limit cycle is noise- 
contaminated. Estimates of correlation dimension, v % 1.18 (embedding dimension 
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m = 3) and largest Lyapunov exponent, h M 0 b.p.o., confirm periodicity of the flow. 
Figure 4(c) shows d log, C(r)/d log, r ( = v) as a function of the scale (log, r )  for various 
embedding dimensions (m < 8); moderate scaling region (r,,,/rmin M 4-6) and good 
convergence (see inset) confirm that SDP is a periodic attractor. 

2.1.2. SP 
At a fixed St,,, as af is reduced, the roll-up location and hence the pairing locations 

move farther downstream, since the instability waves travel farther before achieving 
the saturation amplitude (Freymuth 1966). Thus, feedback (i.e. the induced velocity 
fluctuation at the origin from paired structures) from the first and second pairings 
becomes weaker (than for SDP); more importantly, the second pairing becomes phase- 
unlocked (i.e. feedback phase at the origin varies from one pairing to the next). 
Consequently, the second pairing ceases to be periodic and its location shifts (inferred 
from a broadband quarterharmonic in a downstream spectrum, not shown). However, 
the relatively periodic subharmonic in the time trace (figure 5a, with af = 0.04 % and 
St, = 0.012) indicates a stable first pairing. The spectral filling in figure 5(b), with 
discrete frequencies on a broadband pedestal, indicating modulations of the 
subharmonic/quarterharmonic (see also the time trace), suggests chaotic dynamics and 
is discussed below. 

The phase portrait and Poincare section (figures 6a,  b) indicate an increased spread 
in the trajectories with only three distinct clusters as opposed to four for SDP; the 
spread ( z  0.2 m s-l) is comparable to the cluster separation (M 0.35 m s-’). We find 
two scaling regions from dimension calculations (see figure 6 c) : v M 1.3 with a negative 
h(x -0.038 b.p.0.) at large phase-space scales, and v = 1.9-1.95 with a positive 
h (z 0.045 b.p.0.) at small phase-space scales; h computations are explained in 
Appendix B. Braze's/( 1992) analysis of noise-contaminated sinusoidal signals also 
yielded h < 0 and 1 < v < 2, suggesting that the algorithms used to compute v and h 
are sensitive to noisy data and provide averaged estimates (between high-dimensional 
(due to aperiodic modulations) and periodic dynamics). However, v = 2 and h > 0 at 
small phase-space scales suggest chaotic dynamics. The large scales in phase space 
correspond to the nearly periodic first pairing dynamics, while the behaviour at small 
scales reflects the changes in the details (phase modulations) of the (first and second) 
pairing processes. At this stage, the SP attractor is best characterized as a noisy limit 
cycle when viewed at large scales, with deterministic chaos at small scales. 

2.1.3. Chaotic modulations 
As af is decreased from that required for SP, two different chaotic states occur for 

St,, > 0.012 (QCA) and St,, < 0.012 (SCA) (see figure 2). 
QCA: A representative signal and spectrum of the chaotic state for af = 0.12 %, 
St,, = 0.0 17 are shown in figure 7 (a,  b). The spectrum has sharp sidebands around the 
subharmonic (marked with a dashed line) indicating nearly periodic modulations of the 
first pairing, owing to nearly periodic shifts in the pairing locations upstream and 
downstream (caused by periodic changes in the feedback phase), and a broadband 
quarterharmonic indicating chaotic shifts in the second pairing location; amplitude 
modulations in the time trace reflect variations in the induced velocity from pairing or 
once-paired vortices. 

Streamwise growths of peak amplitudes of the fundamentalf, the higher and lower 
sidebands (f, ,f ,) of the subharmonic and the quarterharmonic if are shown in figure 
7(c) .  The fundamental grows exponentially and saturates after x/O, = 55, where roll- 
up occurs. The sidebands’ growth and then their saturation in the region x/O, = 90-1 10 
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indicate a modulated first pairing. Fluctuations in the quarterharmonic growth for 
110 d x/H, < 200 are a result of its chaotically varying phase, which in the initial stages 
of the resonance determines the modified quarterharmonic growth rate (Monkewitz 
1988). Nevertheless, the enhanced quarterharmonic growth rate during the sidebands’ 
saturation (beyond x/B, z 90) indicates the second subharmonic resonance. The 
quarterharmonic saturation location is not clearly defined owing to chaotic shifting of 
the second pairing over a sizeable flow region. 

The phase portrait, shown in figure 8(a), and the absence of tight and well-separated 
clusters in its Poincare section (figure 8b)  are expected for this chaotic attractor. 
Dimension calculations revealed v z 2.43 (m = 4), reasonable scaling region (factor of 
2-4) and convergence (see figure 8c). The largest Lyapunov exponent is positive 
( A  z 0.32 b.p.o.), indicating chaos. 

The method of surrogate data (Theiler et al. 1992) provides a means to differentiate 
nonlinearity from linearly correlated noise in experimental data (briefly described in 
Appendix B) and has been used in well-known examples of low-dimensional chaos (e.g. 
in Rayleigh-Benard convection); we applied this method to QCA. If a dynamical 
invariant measure computed from surrogate data (generated by scrambling the phase 
of the original data while preserving its Fourier amplitudes) is the same as that 
obtained from the original data, then the original process is a linear stochastic process; 
if the measure is different the original process is nonlinear. Figure 8 ( d )  shows v for the 
surrogate data. The absence of convergence or scaling region shows that the data 
represents a nonlinear process. Note that while this observation is not a proof of 
chaotic dynamics, it establishes the fact that the dynamics detected is intrinsically 
nonlinear. Since I-’ z 2.3-2.6 and h > 0, the data reflects low-dimensional chaos. 
S C A :  A different type of chaotic state is found for St,, < 0.012, whose spectrum is 
depicted in figure 9(a) for rcf z 0.022% and St,? = 0.0095. Unlike that for QCA, this 
spectrum has very little quarterharmonic content ; a broadband subharmonic indicates 
aperiodic modulations of the first pairing. Calculations of v ( z  2.2, see figure 9b) and 
A ( =  0.09 b.p.0.) indicate chaotic behaviour. Since we are interested in the ML 
dynamics that includes the second pairing and SCA involves low-dimensional 
dynamics of only the first pairing, we do not focus on SCA further. For the same 
reason. we focus on SDP and not on SP. 

2.1.4. Low-amplitude states 
As af is reduced further (below that for the chaotic states), the subharmonic also 

becomes weaker, and the broadband spectral content increases. Time series of these 
low-amplitude (forced) states and of the unforced state (i.e. without periodic forcing) 
yielded no scaling regions and little or no convergence (for m < 8 and 200000 data 
points) in dimension calculations, implying that, if the dynamics is indeed deterministic, 
it could be high-dimensional or that single-point measurements are inadequate. 

In summary, most states identified in the flow are characterized by low-dimensional 
attractors and correspond to quite different vortex roll-up and pairing dynamics which 
are periodic and chaotic. In the following we examine the transitions between various 
states for three af ranges. 

FIGURE 7 .  For QCA: (a) time trace at x/O, z 120 and U ( y ) / U e  z 98%, for af z 0.12% and 
SroP z 0.01 7, shows amplitude modulations of the subharmonic with occasional quarterharmonic; (6) 
the power spectrum has peaks at the fundamental f and sidebands U;,L) around the subharmonic 
(denoted by a dashed line), and a broadband quarterharmonic t.f; and (c) the streamwise evolutions 
of peaks of the r.m.s.-velocity fluctuation profiles for ,f;f,,f, and i f  reflect completed vortex roll-up 
by x/f iV 60, first pairing for 80 < x / B ,  < 120, and second pairing for ?C/O, 3 180. 
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FIGURE 8. For QCA: (a) the phase portrait shows a two-dimensional projection of the strange 
attractor; (b) the Poincari section has no separated clusters as observed for the periodic attractors; 
and (c) the correlation dimension v is shown as a function of distance r in phase-space at different 
embedding dimensions m. (d) Correlation dimension LJ at different embedding dimensions m for the 
surrogate data shows that v does not converge for m < 8 (see inset). 

2.2. Transitions in the phase diagram 
At high forcing amplitudes, as af is increased (for a fixed SrHp) from that required for 
SP, a new state (SDP) appears with a stable quarterharmonic in addition to an already 
stable subharmonic (see figure 2). Thus, increasing af produces increased spatial order 
in that (additional) pairings farther downstream become periodic ; higher af causes 
earlier roll-up and pairing, whose stronger, phase-locked feedback excites and sustains 
the periodicity. For af higher than that required for SDP, an if peak (i.e. a third 
pairing) also appears. In the low af range, increasing a,  produces an apparent 
intermittency transition from QCA to SP during which the nearly periodically 
modulated first pairing becomes periodic. The intermittent behaviour is evident in the 
signal during this transition, which comprises periodic segments interspersed with 
chaotic ones (see figure 10). Physically, the flow switches between pairing periodically 
(when the subharmonic is nearly phase-locked and its saturation location is fixed) and 
chaotically (when the subharmonic phase becomes unlocked and its saturation location 
shifts). A similar intermittency transition was recently investigated in a forced jet 
(Broze & Hussain 1996). Another interesting transition was detected from the unforced 
ML (denoted as UML) to QCA and is described below. 

The UML spectrum (see figure 11 (a), recorded at s / H p  e 150) has a broadband 
fundamental centred at Sf,,> z 0.01, and a broadband subharmonic around 
Sftfe = 0.005. A spectral array is shown in figure 11  (b) for 0 < at < 0.38% and 
St, e 0.0165 recorded at x/O, z 140. The frontmost spectrum corresponds to UML 
(at z 0), and has a broadband fundamental ( f u , z f ,  with z 0.01) and a broadband 
subharmonic (around St,? z 0.005) owing to aperiodic roll-up and first pairing, 
respectively. The sequence of events that leads to QCA for increasing at can be 
described in two stages. The first stage (slLs3 in figure 11 b) involves nonlinear 
interactions of the excited frequency f with the peak of the broadband around 
St,,? = 0.01 to produce the sum f+f,,, (Sr,,, = 0.0265) and the difference 
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FIGURE 9. For SCA: (a) the power spectrum at x/O, % 140 and U(y)/U,  % 98 %, for af = 0.022 O/O and 
St,, w 0.0095, has a fundamental f peak and a broadband subharmonic; and (b) the correlation 
dimension v for different distances r in phase-space is shown for various embedding dimensions m. 

f - f u n f (  =A, St,  z 0.0065) frequencies; fh (belonging to the broadband o f f u n f )  andf, 
(see in s3) bracket the subharmonic (if, St,, M 0.0082). (Note that in s8, f ,  and f h  
correspond to St,, M 0.0076 and 0.0089, respectively.) 

In the second stage ( s4s8  in figure 11 b), for increasing af ,  the peaks atfi and fh move 
closer together (i.e.fh-fi decreases) and become dominant compared to the background, 
and finally QCA is obtained (see s8). Note the disappearance of the broadband around 
i f un f  and the emergence of a broadband quarterharmonic (;A St,, z 0.0041). We term 
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FIGURE 11. (a) Power spectrum for the unforced ML recorded at x/O,  z 150 has a broadband 
fundamental at St, z 0.01, and a broadband subharmonic at St,, z 0.0055. (b) Spectral array for 
transition to QCA from UML with 0 ,< af < 0.038 YO, shows the emergence of the lower subharmonic 
sideband fl (at s3) followed by progressive shifting (after s4) of the sidebands cf,,f,) toward each 
other. (c)  Power spectrum for SDP recorded close to the ML origin, at x/O, x 4, indicates dominant 
fundamental f due to forcing, and subharmonic i f  and quarterharmonic i f  peaks due to feedback. 
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Feedback from the first and second pairings is evidenced from i j a n d  a f peaks in the 
SDP spectrum recorded near the ML origin, x/O, = 4 (see figure 11 c); a similar 
spectrum (not shown) with a weaker quarterharmonic is observed for SP. If feedback 
is responsible for roll-up around St,, = 0.012 and pairing around St,, = 0.006 in UML 
(see figure 11 a ) ,  then one would expect that the minimum a f  required to produce SP 
(periodic roll-up and pairing) is at St,  z 0.012. This is because feedback from pairing 
at $.fez (subharmonic of the excited frequency) would reinforce the already existing 
pairing feedback at $ALnf (subharmonic of the natural roll-up frequency, 
St,? z 0.01 1-0.013), both of which belong to the same frequency band around 
Stop = 0.006. Indeed our observations show that the minimum af required for SP is at 
St,, z 0.01 15 (where the wedge-shaped region in figure 2 is centred). When excited at 
very low af and St,, + 0.01 15, to sustain pairing at ;,A5, feedback from this pairing must 
be stronger than feedback from pairing at ifunf. When forced at a higher af, roll-up and 
pairing occur earlier in x, thereby inducing stronger feedback (larger vortex-induced 
velocity fluctuations) at the excited frequency. Thus, for St,,.+ 0.01 15, substantially 
higher af is required to produce SP and SDP (note the logarithmic ordinate scale in 
figure 2). Thus, we have seen here evidence of feedback and a self-consistent 
explanation for the ML phase diagram based on the existence of feedback. 

In the next two sections, we propose a set of spatial measures to identify 
spatiotemporal dynamics in open flows and briefly review previous studies and their 
limitations. Experiments were conducted for SDP, QCA and UML (to provide us with 
some understanding of the naturally evolving flow in the low-noise environment of the 
anechoic chamber). SDP and QCA are chosen instead of SP and SCA, since they 
involve low-dimensional dynamics of both the first and the second pairing, and cover 
a wide region of control parameter space. 

3. Spatial characteristics 
We begin by discussing the critical differences between temporal and spatiotemporal 

dynamics in a flow. As explained in 5 1, spatially separated points in a flow domain are 
said to be coupled when dynamics at these points depend on each other. Since the 
temporal dynamics on an attractor at a certain spatial location can be predicted from 
knowing the evolution on an attractor observed at another location (in a coupled 
domain), the essential flow dynamics can be considered to be temporal. Note that the 
two attractors may be quite different in spatially developing flows since different modes 
can dominate in different flow regions. When coupling is lost the resulting dynamics is 
spatiotemporal. Thus, ‘loss of coupling’ implies the unpredictability of dynamics at 
one point using measurements at another. This loss can come from temporal chaos due 
to exponential sensitivity to initial conditions. In a spatially developing flow, temporal 
chaos will also result in spatial disorder (e.g. see Rasmussen & Bohr 1987). Thus, it 
would be impossible to use finite-precision single-point measurements to predict the 
dynamics at a later time (at the same spatial location) or at another spatial location; 
the limits of such predictability in time and space are related to h (the largest Lyapunov 
exponent) and the extent of spatial correlation. Since small differences in the initial 
conditions are amplified in space and time, this is an example of spatiotemporal chaos 
(in open flows). In this respect, Deissler & Kaneko (1987) defined ‘convective chaos’ 
and detected it in a reference frame moving with the convective instabilities in a 
Ginzburg-Landau equation simulation (an open flow model). Having studied the key 
features of temporal and spatiotemporal dynamics, we need appropriate measures to 
identify and describe them. Such measures will dictate the number, spacing and 
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FIGURE 12. Spatial evolution of peak cross-correlation coefficient p,,,, for SDP, QCA and UML, 
for increasing probe separation Ax/8, ; the rapid decay implies loss of spatial correlation. 

placement of probes (i.e. sampling locations) for developing spatiotemporal models 
from the data, and hence for devising intelligent open flow control strategies. 

Studies to date of ' spatiotemporal dynamics' have been restricted to homogeneous 
spatially extended systems, in particular, closed flows such as large-aspect-ratio 
Rayleigh-BCnard convection (e.g. Heutmaker & Gollub 1987) and model systems of 
coupled map lattices (e.g. Kaneko 1984). Similar local events are spatially distributed 
in such flows. Correlation length 5 is typically used in these flows to quantify the spatial 
separation over which two signals become uncorrelated (see Hohenberg & Shraiman 
1989). It is usually defined such that RzIx2(Ax) - epAx/6, where RSIz2(Ax) is the peak of 
the two-point space-time correlation function RX,.JAx, 7), and Ax (the separation) is 
non-dimensionalized by the appropriate lengthscale. When [ becomes comparable to 
or less than the characteristic lengthscale (e.g. distance between horizontal plates in a 
large-aspect-ratio Rayleigh-Benard experiment), local dynamics at the two locations 
become uncorrelated, and this flow state is termed spatiotemporal chaos (see Cross & 
Hohenberg (1993) for a review). 

The spatial variation of dynamics (e.g. occurrence on different timescales) in 
spatially developing flows causes correlation to decay rapidly (i.e. small [), thereby 
indicating spatiotemporal dynamics ; however, the dynamics at different locations may 
yet be coupled. Thus, the defining measure of coupling should be different in spatially 
developing flows. Measures general enough to describe spatiotemporal dynamics in 
any flow field are still lacking. We believe that coherence and cross-bicoherence are 
good indicators of coupling, and illustrate this in $93.2 and 4. 

3.1. Cross-correlation 
A single-wire (reference) probe was positioned upstream of vortex roll-up 
(30 < x/O, < 40), while a second probe was moved from roll-up to after the second 
pairing location (30 < x/O, < 250); both probes were located at the high-speed edge of 
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the ML, i.e. at the y-location where U z 0.98 U,. The cross-correlation coefficient (for 
zero-mean data) is 

where cZ1 and CT,, are standard deviations of signals from the two probes, and the 
cross-correlation is 

A - 1  

RZ1. , (~)  = C x,(n) x2(n + 4 (r = 0,1,2, . . . , m), 
n=l 

where mh = maximum time delay, rh = r (the time delay), and h = l/J:Fampling. 
Cross-correlation measurements were made for SDP (at St, z 0.012), QCA (at 

St,, z 0.0165) and UML for 90 6 x/O, 6 300 (see figure 12). Note that the maximum 
pxl, + 1 as Ax+O, owing to slight inherent spanwise inhomogeneities (since Az + 0;  
see hgure 1). The rapid spatial decay of the peak p,,,,(~), for all three cases, is due to 
the dominance of different frequencies in different flow regions, i.e.J; ifand ifnear roll- 
up, first and second pairings, respectively. For SDP or QCA, first and second pairings 
always occur for 110 > Ax/Be > 70, thus providing very low correlation between a 
fundamental dominated (upstream) signal and a subharmonic/quarterharmonic 
dominated (downstream) signal. However, in an unforced flow, the aperiodic pairing 
is delayed in x (compared to SDP or QCA), thus providing relatively higher correlation 
farther downstream (see figure 12). 

It is our expectation that the dynamics of periodic states are well coupled over a 
substantial spatial extent (including first and second pairing locations). However, we 
find the correlation length 5 to be in the range 50-800,, for SDP and QCA; this is 
equivalent to at most two fundamental instability wavelengths (i.e. before completion 
of the first pairing). Thus, correlation measurements indicate that dynamics even in the 
domain that includes only the first pairing, let alone the periodic second pairing, is 
spatiotemporal. 

3.2. Coherence 
Since coupling implies the mutual dependence of dynamics at spatially separated 
points, we claim that the transfer function (between the two points) can provide an 
appropriate measure of coupling. Consider the simple case of system dynamics 
described by a linear transfer function, where coherence is the measure of linear 
coupling (see Appendix C for derivations and computation details) and is given by 

x, "x2x2 

where 9 is the Fourier transform and G,, is the spectral density function. Thus, when 
y2(f)  = 1, the two points (x, and x2) are perfectly linearly coupled. For the simplest 
case of a system which is dominated by a single frequency f (where G,,(f) = c:), 
correlation loss is equivalent to coherence loss, and both reflect loss of coupling. But 
this equivalence does not hold for a spatially developing flow, where coherence at all 
dynamically significant frequencies may still remain high. We therefore believe that 
correlation measurement in such flows is not meaningful, but that coherence is an 
appropriate measure of coupling. Note that the presence of unmeasured sources 
(contributing to the downstream dynamics but not recorded in the upstream signal) 
could yield a decaying coherence and hence indicate an apparent loss of coupling; but, 



92 S .  Narayanan and F. Hussain 

since the ML origin is the only conceivable point of receptivity in the flow, this 
possibility can be disregarded. For complicated dynamics governed by nonlinearities, 
higher-order transfer functions must be considered; we use cross-bicoherence as a 
measure of quadratic coupling in $4. 

Coherence measurements were made in a forced jet by Bonetti & Boon (1989); 
coherence decay was related to the local chaotic attractor dimension and was claimed 
to indicate transition to turbulence. Coherence and bicoherence have also been used to 
infer transition to turbulence in a wake by Miksad, Jones & Powers (1983). We find 
that the decays of coherence and cross-bicoherence need not be associated with 
transition to turbulence, but merely indicate spatiotemporal dynamics. 

We examined the evolution of peak coherence at dynamically significant frequencies 
resulting from forced roll-up and feedback-sustained periodic/modulated first and 
second pairings. The reference probe was positioned very close to the ML origin, at 
x/O, z 7, while the second probe was traversed for 7 < x/O, < 300, i.e. beyond the 
second pairing location. Relative phases at the dominant frequencies were recorded 
at the high-speed edge (to reduce the uncertainty in phase measurements, which 
increases in the centre of the ML). For the phase measurements, the reference probe 
was positioned close to the roll-up location since the subharmonic phase there governs 
the modified growth rate (of the subharmonic) during subharmonic resonance 
(Monkewitz 1988; Husain & Hussain 1989). 

3.2.1. SDP 
Coherences at the fundamental, the subharmonic and the quarterharmonic remain 

high ( 2  0.9) for x/O, d 300 (figure 13a). Such high coherences are accompanied by 
linear variations (with x) of the averaged relative subharmonic phase (appropriately 
unwrapped) shown in figure 13 (b), indicating phase coherent signals; i.e. spatially 
coherent motion extends beyond the second pairing location (x/O, z 200-220). 
However, phase velocities (inversely proportional to the slopes of the phase variation) 
of individual frequencies vary in different regions. The fundamental phase speed seems 
to remain constant up to completion of the second pairing (x/O, z 200) with a slight 
variation after completion of the first pairing (presumably owing to generation of the 
fundamental as a harmonic of the subharmonic). The subharmonic maintains an 
almost constant phase speed (higher than that of the fundamental) up to completion 
of the first pairing (x/B, z 140), while the quarterharmonic phase-velocity increases 
(above that of the subharmonic) for x/O, 2 100 and remains so up to x/B, z 130 
and for x/O, 2 170 (these trends are expected for subharmonic resonance from 
Monkewitz’s (1988) theory). For 130 < x/O, < 160, the quarterharmonic phase 
speed fluctuation (increase and then decrease) indicates local phase jitter, i.e. slight 
aperiodicity during the second pairing (as speculated with regard to the if growth in 
$2.1.1). (Note that yz(J> variations, while remaining above 0.9, do not have any 
obvious correspondence with this phase-jitter.) Beyond x/O, = 300, where the third 
pairing is completed, sharp coherence drops (not shown) suggest spatiotemporal 
dynamics. Coherence decay may also arise from nonlinear interactions; however, this 
is ruled out in $4 using cross-bicoherence measurements. 

High-coherence at the fundamental is expected owing to its periodic forcing; 
however, the high coherences at the subharmonic and the quarterharmonic, implying 
strong coupling, can only be due to dominance of feedback. Thus, even though the flow 
is physically open, the dynamics are coupled over several instability wavelengths 
(x/A, z 7); i.e. the flow is spatially coupled and hence dynamically closed. (Note that 
x/A, z 2Stse(x/Oe), where A, is the fundamental instability wavelength.) 
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FIGURE 13. For SDP: (a) the evolution of peak coherence y’Cf‘) at the fundamentalf, the subharmonic 
+A and the quarterharmonic i f ; and (b)  the evolution of the relative phase $(f> at the fundamental 
.f, the subharmonic i f a n d  the quarterharmonic ifwith $(if) fluctuations for 130 < x/O, < 160 (the 
encircled area). 
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3.2.2. QCA 
Similar measurements for the chaotic attractor yielded peak coherences at the 

fundamental, the two sidebands and the quarterharmonic (peak of the broadband, see 
spectrum in figure 7b) ,  shown in figure 14(a). Coherences at the fundamental f and the 
lower sideband f ,  remain above 0.9 up to x/H, z 180, while coherences at the higher 
sideband ,f, and the quarterharmonic i,f show some decay following roll-up at 
x/H, z 70 but remain above 0.7 up to x/O, z 180, where chaotic second pairing occurs. 
The high coherences at all significant frequencies up to the second pairing location 
(x /h ,  z 6 ,  x / O ,  z 180-230) indicate spatial coupling. Beyond ./He x 180, the rapid 
decay of coherences at all these frequencies indicates progressive loss of coupling 
between the origin and the downstream locations, i.e. spatiotemporal dynamics. The 
relative phases at individual frequencies, shown in figure 14(b), support the claim of 
phase coherence (nearly linear variation of phase with x and high coherence values) at 
the sidebands up to x/H, M 160. The fundamental phase velocity remains nearly 
constant up to the second pairing (.-C/O, < 180) while the sidebands’ phase speeds are 
unequal during the first pairing (i.e. for x/O, < 110); the latter was also noted by 
Monkewitz (1988) for his ‘detuned excitation’ case (where sidebands were forced). The 
quarterharmonic phase does not vary significantly up to x / H ,  z 110, after which its 
role in initiating the second resonance (i.e. the second pairing) becomes important, and 
its phase speed increases and remains constant for a short distance (1 10 d x/O, < 140). 
For x/O, > 180, the fluctuations in the phase are due to increased uncertainty in their 
measurements. 

Highly coherent behaviour in the first pairing region indicates that although the 
instantaneous subharmonic phase at a fixed location varies, owing to shifting of the 
pairing location, its phase is well coupled to that at the origin (via advection of 
subharmonic perturbations and its feedback to the origin). The chaotic second pairing 
also provides feedback at aperiodic intervals causing the quarterharmonic phase at the 
origin (q5J to vary. However, in contrast to the first pairing, decaying coherence during 
second pairing reflects a quarterharmonic phase that is poorly matched with $*; i.e. the 
instantaneous phase difference varies from one pairing to the next. We speculate that 
the reason for this mismatch is the extreme sensitivity of chaotic dynamics to initial 
phase conditions. In addition, three-dimensionality in the evolution and interaction of 
vortices may cause this phase mismatch; this effect has not been investigated. We term 
the mismatch ‘phase incoherence’. 

3.2.3. U M L  
Figure 15 shows coherences at the fundamental (a broadband around St,, z 0.01) 

and the subharmonic (a broadband around St,, z 0.0055) for UML. The reference 
probe was positioned upstream of roll-up at x /8 ,  z 65 while the second probe was 
traversed between 65 ,< x/H, < 300. Coherences at the fundamental f and the 
subharmonic $ fremain above 0.9 up to x/O, z 120, i.e. after completion of roll-up 
(saturation location of St,, z O.Ol), but decay thereafter. It is surprising that the 
coherence at the aperiodic subharmonic remains at y2(Gf) 3 0.7 for 150 < x/H, < 220, 
indicating significant coupling in the region of aperiodic first pairing. 

In $2 we found that low-level forcing of the UML triggers (spatially coupled) 
periodic pairing (especially for St,? M 0.01 15 where the af required is the minimum 
among all St,,,); this is similar to the weak global mode that HM speculated in a 
uniform-density jet, which upon small forcing becomes unstable. Such behaviour of an 
unforced mixing layer (an open flow) is quite unexpected. 
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FIGURE 15. Evolution of peak coherence y") for UML at the broadband fundamental f and 
subharmonic if. The y z m  decays rapidly following vortex roll-up but yz(Gf) remains relatively high 
during pairing (1 60 < x/B, < 230) suggesting moderate coupling. 

The results for SDP and QCA show that the dynamics at spatially separated points 
are coupled over a substantial domain, between the ML origin and the first/second 
pairing locations. This domain includes vortex roll-up and at least two vortex pairings 
for SDP but is restricted to roll-up and the first pairing for QCA. Single-point 
measurements made almost anywhere within these domains (and hence the low- 
dimensional attractors found in 92) adequately characterize the flow because of the 
spatial coupling. Downstream of the first pairing for QCA and the second pairing for 
SDP, coherence decay indicates loss of spatial coupling, i.e. spatiotemporal dynamics; 
this loss of spatial coupling is speculated to arise from chaotic feedback (see $ 3.2.2) and 
is investigated further in $94 and 5. To study the advent of quadratic interactions 
during the first and second pairings, we have computed cross-bicoherence and discuss 
the results in the following section. 

4. Role of nonlinear interactions 
The ML dynamics beyond roll-up involve nonlinear growth and interactions of 

various instability frequencies (leading to vortex pairings). As indicated in 8 3, 
coherence decay may also arise from nonlinear effects, and when quadratic interactions 
occur in the flow, coherence alone is not a measure of coupling. The nonlinear 
generation of a particular frequency downstream from quadratic interactions of a pair 
of frequencies at an upstream location occurs from interactions (i) that are initiated 
between the two locations, and (ii) those initiated before the upstream location. Cross- 
bicoherence (see Appendix C for definition and computation details) captures 
quadratic interactions of the former type and is studied for SDP and QCA. A high 
cross-bicoherence @'Cf,f,, f,) z 1) indicates strong quadratic coupling among the 
frequency triad (such that f = f ,  +fi); i.e. it indicates how wellf (at the downstream 
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location) is phase coherent with f, and f, (at the upstream location). For these 
measurements the reference probe was positioned upstream of the fundamental 
saturation location (beginning of significant nonlinearity), while the second probe was 
traversed downstream of the second pairing location along the ray U ( y ) / U ,  z 0.98. 

4.1. SDP 
Cross-bicoherences for the fundamental-subharmonic (f - s) interaction and the 
subharmonic-quarterharmonic (s - q) interaction were measured (figure 16) since these 
subharmonic resonances are the most significant quadratic interactions for SDP. 
Starting from the roll-up location, high f - s cross-bicoherence indicates strong 
resonance, as expected for a stable first pairing. The s - q cross-bicoherence levels are 
high ( 3  0.9) only beyond the first pairing location (x/O, z IIO), where the second 
pairing is initiated owing to the second resonance. The slight drop between 
140 6 x/O, 6 190 corresponds to the region where the quarterharmonic growth is 
temporarily suppressed (see figure 3 c); this supports our earlier speculation that the 
second pairing process is slightly aperiodic owing to local quarterharmonic phase jitter 
(see $3.2). Nevertheless, cross-bicoherence remains fairly high ( 3  0.9) up to x/O, z 350, 
i.e. downstream of the second pairing. 

The fact that both coherence (43.2.1) and cross-bicoherence are high over a large 
region (x/B, 6 300, x/Af z 7), is evidence of spatial coupling in the SDP flow domain. 
We conclude that coherence decay, observed for x/O, 3 300 for SDP, is not simply a 
consequence of (quadratic) nonlinear interactions since even cross-bicoherence drops 
in this region. In fact, this decay of coherence and cross-bicoherence indicates 
spatiotemporal dynamics during the third pairing. 

4.2. QCA 
The interactions addressed here are those of the fundamental f and the higher sideband 
f, producing the lower sidebandf,( = f - f,), and those offandf, producingf,( =f-f). 
The evolution of cross-bicoherences for these cases is displayed in figure 17. High levels 
of cross-bicoherence ( 3  0.8) for the f-f, and f - f ,  interactions are observed for 
80 < x/8, d 180 (rapidly decaying farther downstream) indicating coupling up to the 
first pairing completion. Cross-bicoherence of the quarterharmonic ifwas found to be 
low ( 6  0.1) for interactions with any frequency chosen around the subharmonic, yet 
the second pairing occurs (as seen by modified f f  growth rate and its saturation in 
figure 7 c). Thus f f presumably undergoes nonlinear interactions (two-dimensional or 
even three-dimensional) with a range of frequencies around the subharmonic (hence 
providing a low, averaged cross-bicoherence for any particular triad). Beyond 
x/O, z 180, where the second pairing occurs, no frequency triads could be identified 
which displayed substantial cross-bicoherence levels ( 3 0.8), showing that quadratic 
coupling is weak. Note that this coincides with the region where coherence decays at 
all significant frequencies. Thus, as concluded in $4.1, the coherence decay observed in 
$3.2.2 does not necessarily come from the onset of nonlinear phenomena (up to the 
second order). The low cross-bicoherence levels indicate phase mismatch (see $3.2.2) 
among the frequency triad (Jf,, f h ) .  Higher-order nonlinear interactions (involving 
more than three frequencies) can produce low cross-bicoherence, but their physical 
significance is unclear. 

From cross-bicoherence, we have found spatially coherent motion for the periodic 
and the chaotic attractors (involving two pairings in the case of SDP but only the first 
pairing for QCA). The region of decoupling (during the third pairing for SDP and 
during the second pairing for QCA) is inferred from decaying cross-bicoherence and 
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FIGURE 16. Spatial evolution of cross-bicoherence p2cf,fi,fi) for SDP involving quadratic interactions 
of the fundamental and the subharmonic, and the subharmonic and the quarterharmonic ; pz(+A 
-if) is high only for x/O, 2 120 where the second pairing is initiated and drops slightly for 
130 < x/O, < 190 where quarterharmonic phase jitter is suspected. 
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xiee 
FIGURE 17. Spatial evolution of cross-bicoherence p2(Jf i , f i )  for QCA involving quadratic 
interactions of the fundamental and sidebands; P2(fh,J -A) and ,!?*(j& - fh)  are high only for 
x/O, 2 80 where the first pairing begins and sharply drop for x/O, 2 180 marking the onset of 
spatiotemporal dynamics. 
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FIGURE 18. Power spectra at different x for SDP show periodicity, and growth followed by saturation 
of the fundamental, the subharmonic and the quarterharmonic; the last three spectra (at the largest 
x/8, values) were recorded with Ax/@, z 50 while the others were recorded with Ax/B, % 10. 

is consistent with coherence fall-off observed in 5 3.2; this signifies spatiotemporal 
dynamics farther downstream involving phase incoherence (not to be confused with a 
transition to turbulence). During the second pairing for QCA, the chaotic dynamics 
cause small (undetectable) changes in the quarterharmonic phase at the origin to result 
in large variations farther downstream, thereby causing phase incoherence; this seems 
to be the mechanism for the loss of spatial coupling. We term this to be spatiotemporal 
chaos, wherein spatial and temporal disorder originate from deterministic chaos. 

To summarize, high coherence and cross-bicoherence, at dynamically significant 
self-excited frequencies, over ‘large’ extents (x $- A,) indicate spatial coupling in the 
flow. In the following, we analyse the effects of presence (or lack thereof) of spatial 
coupling on dynamical invariant measures used to describe the attractors in $ 2 .  

5. Spatial variations in temporal measures 
To study the spatial development of the temporal attractors (SDP and QCA), 

spectra, correlation dimension v, and the largest Lyapunov exponent h were computed 
from signals sampled at different streamwise locations. Time traces and spectra were 
recorded at a few locations from upstream of roll-up to downstream of the second 
pairing location at intervals Ax z 10 0,. Estimates of v and h are reported only where 
v has significant scaling regions (factor of at least 2), and both v and h converge quite 
well. 

5.1. SDP 
A spectral array for SDP (St,, x 0.012 and af = 0.2%) is shown in figure 18, for 
20 < x/O, d 300 along the U ( y ) / U ,  z 0.98 line, displaying the dominance and 
periodicity of the fundamental, the subharmonic and the quarterhannonic frequencies 
close to roll-up, pairing and second pairing locations respectively. 

The correlation dimension v and the largest Lyapunov exponent h are displayed as 
functions of the streamwise distance in figure 19(a’,b). For most of the streamwise 
extent, v = 1.1-1.2 (m = 3) with h z 0 b.p.o., indicating periodicity of roll-up, the first 
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FIGURE 19. (a) Streamwise variation of correlation dimension v for a periodic (SDP) and a chaotic 
(QCA) attractor. The almost constant v (= 2.3-2.6) for QCA in the region 90 < x/O, < 160 
corresponds to chaotic features of the attractor, and the slight increase of v (> 1.2) for SDP around 
x/O, = 150 reflects phase jitter during initial stages of the second pairing. The dashed line for QCA 
represents speculated increase of v based upon dimension calculations which yielded small scaling 
regions and poor convergence. (b) Streamwise variation of the largest Lyapunov exponent ( A ,  b.p.0.) 
for SDP and QCA; h > 0, indicating chaos, is observed for QCA where 2.3 < v < 2.6. 
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FIGURE 20. QCA power spectra at different x shows sequential growth and saturation of the 
fundamental, the sidebands and the broadband quarterharmonic; the last three spectra are recorded 
with AxlB, z 25 while the others were recorded with Ax/B, z 10. 

and the second pairings. We find that I /  is high (1.3-1.6) and h is negative 
(-0.064 < h d -0.032 b.p.0.) in a region between the first and the second pairing 
locations (around x/O, = 150). Based upon discussions in $2.1.2 (for SP) we infer that 
such v and h estimates indicate noisy limit cycles. The slight aperiodicity during second 
pairing may be due to jitter in pairing, or three-dimensionality. Quarterharmonic 
growth suppression and small fluctuations in our phase and cross-bicoherence 
measurements over this region suggest quarterharmonic phase jitter (see 62.1.1). This 
jitter is reduced once the second pairing is complete ; consequently, farther downstream, 
v and h indicate periodic dynamics. 

The fact that features of a periodic attractor are captured almost everywhere over 
4 < x/H, < 300 is evidence of the spatial extent of order in the flow and is consistent 
with the results in $93.2 and 4. 

5.2. QCA 
Spectra for St, z 0.017, af z 0.2% in the region 20 d x/0, < 230 are shown in figure 
20. The initial dominance of the fundamental, the growth and saturation (by x z 90 19,) 
of the two sidebands around the subharmonic (remaining distinct up to x z 130 0,) 
and emergence of a broadband quarterharmonic (near x = 100 0,) are consistent with 
the growth patterns discussed in $2.1.3. For x 2 130 O,, the spectral background 
increases and is dominated by the broadband quarterharmonic ; this increased spectral 
broadening is a consequence of phase incoherence (inferred from coherence and cross- 
bicoherence decay), not necessarily indicative of transition to turbulence. 

Correlation dimension for QCA at different x is shown in figure 19(a). For 
x/0, < 60, v = 1.1-1.3 (m = 4) and h x 0 b.p.o., owing to periodic roll-up. However, 
for 60 < x/H, d 90, v increases to 1.82, while h is sizeably negative 
(-0.089 < h < -0.032 b.p.o., see figure 19b). The probe in this region senses the 
effects of periodic roll-up and modulated pairing, thus dimension calculations 
yield an averaged v estimate (1 < v < 2). Farther downstream, where chaotic 
modulations of the second pairing are sensed, chaotic dynamics (v = 2.2-2.5 and 
h z 0.128-0.449 b.p.0.) are found over a sizeable flow region (90 < x/H, < 150). For 
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x/0, > 160, dimension estimates quickly exceed 3, scaling regions for v diminish and 
convergence is poor. This sudden increase in dimension corresponds to the onset of 
spatiotemporal dynamics (inferred from decaying coherence and cross-bicoherence in 
$3.2.2 and $4.2). 

We have thus verified the spatial extent over which the dynamical system is 
essentially temporal (having periodic or chaotic dynamics). There are some locations 
(around x / 0 ,  = 150 for SDP, and x/O, < 90 for QCA) where single-point measure- 
ments yield inconclusive results (e.g. 1 < v < 2) and reflect only local dynamics (e.g. 
v z 1 for x/0, < 60 in QCA). A sudden increase in v for x/0, > 160 is associated with 
the loss of spatial coupling (inferred in $93 and 4). 

6. Concluding remarks 
The extreme sensitivity of convectively unstable (open) flows to external disturbances 

makes downstream flow prediction seemingly impossible using single-point meas- 
urements. However, in the presence of spatial coupling, even such complex open flow 
dynamics are tractable. We recommend the following approach to describe open flow 
dynamics : (i) use standard dynamical systems techniques to identify low-dimensional 
states (if any), and then (ii) identify dynamically significant phenomena (such as vortex 
pairings in jets and mixing layers, bursting and streaky structures in boundary layers 
(Jeong & Hussain 1992)) and associated frequencies, and compute coherence and 
cross-bicoherence to measure coupling. Step (i) describes transitional dynamics in 
terms of low-dimensional attractors, and step (ii) discerns the temporal (spatially 
coupled) or spatiotemporal (uncoupled) nature of the attractors in appropriate flow 
regions. 

In the presence of spatial coupling, the transitional forced mixing layer is found to 
behave as a temporal dynamical system over several instability wavelengths. Spatially 
separated points are dynamically coupled via advecting rolled up and pairing vortices 
and feedback to the flow origin (receptivity point); evidence of feedback from pairings 
is provided. The spatially coupled dynamics is confined to periodic and low- 
dimensional chaotic attractors found in a wide region of the control parameter space. 
The finding of low-dimensional attractors opens up prospects for intelligent, nonlinear 
control of open shear flows using novel techniques such as chaos control (Ott, Grebogi 
& Yorke 1990). A forced axisymmetric jet (BH) and the forced mixing layer are 
found to have similar spectra, dimensions and largest Lyapunov exponents for the 
periodic (SDP) and chaotic (QCA) states. This is not too surprising because of the 
similar evolutionary vortex dynamics (i.e. roll-up and feedback-sustained pairings) in 
both flows. 

Measurements of coherence and cross-bicoherence were used to determine the 
spatial extent of the temporal dynamical system summarized above ; high coherence 
at significant frequencies for the periodic and even chaotic attractors are additional 
evidence of strong feedback. The periodic attractor SDP is found to be spatially coupled 
well beyond the second pairing location. For the chaotic attractor QCA, dynamics 
up to the first pairing is seen to be spatially coupled. Farther downstream, during the 
chaotic second pairing, decaying coherence and cross-bicoherence indicate loss of 
coupling which is accompanied by a large increase in the dimension. In the absence of 
spatial coupling it is impossible to predict the dynamics at any point in the flow from 
knowledge about the dynamics only at another location. We speculate that, for the 
chaotic attractor, the spatial disorder (loss of coupling) observed farther downstream 
is caused by temporal chaos (see §4.2), and hence term the resulting downstream 
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dynamics spatiotemporal chaos. However, a quantitative characterization of this 
behaviour is lacking since analyses of other possible mechanisms for spatiotemporal 
chaos (such as three-dimensionality and transition to turbulence) require multiprobe 
measurements ; unfortunately, no obvious experimental approach for this is evident. 

A quantitative description of spatiotemporal dynamics (currently lacking) might 
require devising new measures (derived from signals sampled simultaneously in space 
and time), which may provide sophisticated models for prediction and control 
of open shear flows. The use of coherences suggested here seems to be ideal for 
choosing optimal sensor number, placement and spacing for the modelling. The 
development of multipoint techniques, if possible, may yield dimension and Lyapunov 
exponents for spatiotemporal systems. An added concern in developing such tools is 
to ensure that the invariant measures are intensive, i.e. do not depend on the domain 
size, especially in a spatially developing flow (where increasing the domain size could 
change dimension estimates since different modes dominate in different flow regions). 
Dimension density is one such measure which is based upon estimation of a two-point 
dimension (Pomeau 1985), but is restricted to homogeneous flows (Mayer-Kress & 
Kurz 1987). Also, transfer function estimation provides a means to predict the 
dynamics at another spatial location from measurements at a single location; i.e. it is 
an ideal measure of the predictability. These studies are beyond the scope of the present 
paper, and some are being pursued. Nevertheless, our combined approach (using 
dynamical systems and two-point spectral measures) can be used to describe coherent 
structure dynamics in a wider class of open shear flows, such as boundary layers, jets 
and wakes. 

We are grateful to Drs George Broze and Davinder Virk for reviews of the 
manuscript. This work, excerpted from the MS thesis of SN, was supported by the 
Office of Naval Research grant NOOO14-89-J-1361 and the Air Force Office of Scientific 
Research grant F49620-95- 1-0302. 

Appendix A. Description and qualification of experimental facility 
The newly built plane mixing layer facility (schematic shown in figure 21a) is 

attached to a 15.25 cm diameter, 77 m long iron pipe connecting the blower to the 
circular pipe (P) entering the anechoic chamber (shown schematically in figure 21 b). 
The chamber is an air-conditioned concrete box (0.3 m thick walls) set on 44 air 
bearings with 1 m long fibreglass wedges lining the entire inner wall surface so that the 
chamber dimensions are 7.5 m x 5 m x 5 m from wedgetip to wedgetip. The interior 
ambient sound level is 35 dB above 100 Hz. Vertical pipes attached to the bottom of 
the chamber provide traverse support. The configuration of the facility prior to 
entering the chamber is documented in Bridges (1990). The flow loop, having only large 
radius bends to minimize secondary flow, has a cooling coil outside the anechoic 
chamber to control the supply air temperature which otherwise increases with blower 
velocity. A filter removes 95 O/O of dust particles above the size of 2 pm. The blower 
requires some settling time ( z 1-2 hours) to stabilize the temperature and blower 
oscillations. 

Individual facility sections 
The extended facility (inside the anechoic chamber) comprises a circular-to-square 

(CS) section, a diffuser, a settling chamber and a nozzle. Air enters the chamber 
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FIGURE 21. (a) Schematic of the plane mixing-layer facility, showing the settling chamber with the 
flow conditioners used; the exit excitation chamber is also illustrated. --, 18 mesh; ---, 24 mesh; 
---, 30 mesh. P, pipe; CS, circular-to-square section; D ,  diffuser; V, vanes; S ,  screen; F, flange; C, 
contraction; E, excitation; W, wall. (b) Schematic showing facility attachments prior to the mixing- 
layer facility and the anechoic chamber where experiments were conducted. A,  air intake; B, 
compressor with muffler and vibration isolating couplings; C, DC motor; D, electrostatic filter; E, 
heat exchanger; F, screen; G, honeycomb; H ,  plane mixing-layer facility; I, anechoic chamber; J ,  
fibreglass wedges. 

through a 91.4 cm long, 15.24 cm diameter pipe, to which the 30.48 cm long CS section 
with an inlet diameter of 15.24 cm and a 17.78 cm x 17.78 cm square exit is attached 
(figure 21 a). A 24-mesh screen at the entry of this section ensures uniform flow at the 
pipe exit (O/Uc > 98 % for more than 95 of the entire cross-section), and also serves 
to trip the flow at the walls causing the flow to remain attached to all the walls. We have 
ensured that Re, < 40 (d  is the screen wire diameter) so that there is no vortex shedding 
from the screen wires. Open areas for all screens exceed 57 YO to prevent non-uniform 
flow downstream of the screen (Bradshaw 1964). The CS is followed by a square 
diffuser (Din figure 21 a) with a 17.78 cm x 17.78 cm inlet and a 50 cm x 50 cm exit (an 
area expansion of 7.91), providing a 14.8' half-angle expansion over a distance of 
60.96 cm. To totally suppress separation, a set of four, 0.229 cm thick, aluminium 
splitter vanes were installed in the diffuser, producing a half-angle of approximately 2.8" 
in each cell. Termination of the vanes at about 60% of the length of the section was 
found to be sufficient for flow conditioning. The vane spacing was set to account for the 
momentum deficit in the growing boundary layers on the diffuser walls, thereby 
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FIGURE 22. Transfer function of the excitation chamber shows frequencies supported by the 

chamber. The excitation frequency chosen for the present experiments is indicated as A,. 
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FIGURE 23. Exit boundary-layer spectrum. Note that the lack of discrete frequencies (besides the 

small peak around 28 Hz) indicates a minimally disturbed boundary layer. 

ensuring a uniform flow at the exit. Sharp knife-edges of the vanes at the inlet and the 
exit minimize vane wakes. 

A 53.34 cm long settling chamber with flow conditioning screens follows the diffuser. 
Two 24-mesh screens (66 YO open area) were placed at the diffuser exit and 600 d after 
the diffuser (a spacing of 500d is recommended for fine mesh screens by Laws & 
Livesey 1978). Two 30-mesh screens (61.4% open area) follow the second 24-mesh 
screen at about 1200 d and then 600 d farther downstream. The flow after each screen 
was measured to ensure progressively more uniform mean velocity profiles and 
decreasing turbulence intensity levels. The exit mean velocity of the settling chamber 
is uniform (to within Ifi 2 YO of centreline velocity) across more than 98 YO of the cross- 
section. An overshoot of velocity (= 2-3 YO) is detected close to the walls. 

A 7.62 cm long straight section follows the fourth screen to the nozzle contraction. 
The two-dimensional contraction has a cubic polynomial profile with a contraction 
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FIGURE 24. (a) Mean velocity profile in the exit boundary layer; it agrees well with the Blasius solution 
for a laminar boundary layer; (b) r.m.s.-velocity fluctuation profile in the exit boundary layer with 
u~ , , /U ,  < 1 % (indicative of a 'nominally' laminar boundary layer). 
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ratio of 10: 1, an exit aspect ratio of 10: 1 (length L = 50 cm, slit width w = 5 cm), and 
a 38.1 cm wall extending on one side; the anechoic chamber wedges are at least 10000 
8, downstream of the nozzle exit. A 2.5 cm (= +w) straight section is provided at the 
entry of the nozzle, and a similar 1.25 cm section at the exit. The straight section at the 
entry and the 7.62 cm straight section before the nozzle provide a 600 d long section 
before the contraction. A shear-layer excitation system (three 4”, 10 W woofer 
speakers) has been installed close to the shear-layer lip (see inset in figure 21 a). Sharp- 
edged aluminium blocks have been used at the exit to enable adjustment and to ensure 
a uniform excitation slit width (< 1 mm). The excitation chamber transfer function 
shows the discrete frequencies at which the chamber supports excitation (figure 22). 
The excitation frequency was chosen to be 312 Hz to achieve the desired St, range 
(0.00&0.024) with U ,  < 12 m sK1 (for which the exit boundary layer is laminar). The 
transfer function of the settling chamber and the contraction was also inspected, and 
no abnormal resonances were detected. 

Exit characteristics 
The mean velocity ( U )  profiles at the nozzle exit (without the wall) obtained at 

several spanwise locations are uniform ( < 2.5 YO variation in U ) .  A U profile measured 
by a Pitot tube did not indicate any overshoot, suggesting that the overshoot 
( NN 2-3 O h )  detected by the hot-wire may be due to flow cooling close to walls. The exit 
centreline longitudinal turbulence intensity was less than 0.1 YO for U, < 12 m s-l. 

The exit boundary layer characteristics indicate ‘ nominally laminar’ boundary 
layers (Hussain 1983) for velocities up to 12 m sK1, i.e. a shape factor in the range 
2.5-2.65, low peak turbulence intensity (ukaz /Ue d 1 %), and no discrete frequencies 
in the spectrum recorded in the boundary layer (see figure 23) except a small peak at 
28 Hz (which is presumably a room acoustic mode). The mean and r.m.s.-fluctuation 
velocity profiles are shown in figure 24(a, b);  a high-pass filter (5 Hz) was used 
followed by amplification of the fluctuations to improve the accuracy in calculating the 
r.m.s.-velocity fluctuation. A transitional boundary layer was detected at 16 m s-l, 
wherein peak fluctuation levels increased ( 3 2 O h )  and the shape factor reduced to 2.24. 
The boundary-layer exit r.m.s.-velocity profiles are uniform in the spanwise direction; 
i.e. they vary from the profile at the centreline (in z )  by less than k 6.5 %. 

Transition to turbulence? 
To detect transition to small-scale turbulence, the slope of the velocity spectrum in 

the inertial subrange was examined at various streamwise (180 < x/O, < 900) and 
transverse locations (0.4 d U / U f  < 1, where Uf  is the freestream velocity). Using a -+ 
slope as an indicator of turbulence, we find that transition occurs between 300 and 
500 8, from the exit, i.e. after second-pairing. For SDP, transition is evidenced only 
after completion of a third pairing. 

Shear layer-boundary layer interactions 
In order to ensure that the ML grows independently of the boundary layer (BL) on 

the (opposite) wall, any possible coupling of shear layer and BL must be examined. By 
maintaining a high w / 8 ,  ratio (> 170 here) we expect to minimize this interaction. The 
interaction was analysed via two-point measurements conducted simultaneously on 
the wall and the ML side. 

Using a special boundary-layer probe on the boundary-layer side and a long-prong 
probe on the ML side, conditional averaging (using at least 1024 realizations) was 
performed on a spectrum analyzer using the ML probe signal for the trigger; both 
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FIGURE 25. Time traces of the longitudinal velocity from the two shear zones across the potential core, 
the boundary layer (top) and the shear layer (bottom) side, at: (a) x/O, z 50, (b) 100, (c) 200, (d )  500; 
the transverse location in each case is chosen such that the peak-to-peak voltage variation is 
maximum. The peak-to-peak voltages in the top time traces are 2-3 orders of magnitude below those 
in the lower traces showing that the shear layer-boundary layer interaction in the facility is weak. 

probes were calibrated for the same velocity and voltage ranges. This exercise was 
performed for SDP, with St,, x 0.012 and af x 0.2%, at various streamwise locations 
ranging from 50 d x/O, < 500. Suitable periodic triggers were chosen at different 
streamwise locations, e.g. based on f at x/O, x 50 (roll-up location) and + f at 
x/O, z 100 (prior to first pairing). Transverse locations of both probes were chosen 
such that maximum fluctuations at significant frequencies cf, fA if) were obtained. 
Results of this experiment are shown in figure 25 (a-d) ; in each figure the top signal is 
from the BL while the bottom one is from the ML. As is evident from the time traces, 
the fundamental, the subharmonic and the quarterharmonic survive the average on the 
BL side close to roll-up, first and second pairing locations, respectively. However, the 
peak-to-peak voltage difference on the BL side is always at least 2 orders of magnitude 
less than that on the ML side. The r.m.s.-velocity fluctuation profiles forf, f f and i f  
were measured at various streamwise locations (x/O, x 100, 200 and 500) across the 
flow; large differences, one or two orders of magnitude, in u~, , /U,  inside the BL and 
the SL, indicate weak coupling (up to x/O, x 500). The flow can thus be regarded as 
a 'nominally free' shear layer over the streamwise extent of our experiments. 
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FIGURE 26. (a) Normalized mean velocity ( U /  Ue) distribution in the unforced ML; the minimum and 
maximum contour levels are 0.18 and 0.98, respectively, with an interval of 0.08. (b) Normalized 
r.m.s.-velocity (u'/U,) distribution in the unforced ML; for 0.001 14 < u'/U, 6 0.01 14 the contour 
interval i s  0.0025, and for 0.036 < u' /Up  < 0.186 the interval is 0.03. 

Exit slit width of the contraction (w )  
Contraction ratio in the nozzle 
Exit aspect ratio 
Exit velocity range (Re,L, range) 
Exit momentum thickness range (0,) 
Exit Re, range 
Critical lengthscale parameter (w/0,) 
Natural roll-up frequency (St,> 

5 cm 
10: 1 
10: 1 
2-16m s-' (6.7 x 103-5.3 x lo4) 
0.1441-0.4846 mm 
6 4 1  54 
> 170 (for Ue > 5 m s-l) 
0.0 1-0.0 13 

TABLE I .  Summary of important facility characteristics 

Instantaneously, vortices in an unforced ML may agglomerate to create structures 
large enough (in circulation) to sweep fluid from the BL and alter the ML dynamics. 
Since no unique type of structure exists in the flow, the choice of a periodic trigger (as 
for SDP) is not possible. However, instantaneous time traces (observed simultaneously 
on the ML and BL sides) do not show any appreciable large-scale (correlated) motion; 
instantaneous peak-to-peak magnitude of the BL fluctuations is at least two orders of 
magnitude lower than that on the ML side. The time average velocity field of the 
unexcited ML (see figure 26) shows the ML spread ; the 98 % U /  U,  velocity line is used 
as an indicator of the location beyond which the potential region starts and extends 
until one reaches the BL. As can be seen from the time-averaged ML spread, up to 
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x/O, z 500 the 98 % velocity line remains more than 100 Oe from the wall. Also 
( u ~ , , / U ~ ) ~ ~ ~ ~ . ~ ~ ~ ~  M 1.2%, which is an order of magnitude lower than that on the ML 
side. These results indicate that even for the unexcited ML there may not be significant 
interactions between the shear layer and the BL structures. Table 1 summarizes some 
important facility characteristics. 

Computer and data acquisition system 
All the data were acquired on a Masscomp MC6650 computer using a real-time 

UNIX operating system. Time series were acquired using a 12 bit A/D converter with 
simultaneous sample-and-hold boards capable of acquiring data at 1 MHz. Data 
acquired from the hot wire were low-pass filtered at 5 kHz (using Krohn-Hite 3341 
analog filters) before sampling. Fluctuation amplitudes of individual spectral 
components were recorded on a two-channel Ono Sokki 920 spectrum analyser (after 
high-pass filtering at 10 Hz) with a 16 bit A/D converter. Dimension and Lyapunov 
exponent calculations were performed on the Cray Y-MP at the NASA Ames Research 
Center. 

Probes, traverse and excitation system 
A 4 pm diameter and 2 mm long tungsten-rhodium hot wire (single-wire boundary- 

layer probe TSI- 12 18), and two single wires with 25 mm (TSI- 12 10 CS) and 5 mm long 
prongs, with a 1.4 overheat ratio, were employed for all measurements. An x-y traverse 
system with stepper motor control (Slo-Syn SS-150-1021 and SS-400-1010 with 0.025 
mm resolution) was used for probe movement. A 2 MHz function generator (Wavetek 
model 20) and a Hafler model P500 stereo power amplifier were used for excitation. 

Appendix B. Dynamical systems techniques employed 
In addition to time traces and their discrete Fourier transforms, DS measures were 

used to analyse temporal dynamics. Sufficiently long time series (typically 100000 data 
points) sampled at 40 times the dominant frequency ( f ,  if or i f )  were used for 
computing the following measures and to provide well-resolved Poincare sections. 

(i) Mutual information (MI): MI for discrete signals is given by 

where Psq, P,, PQ are the probability density functions (PDF) of the two signals. MI 
quantifies the time connectivity, i.e. correlation, between two time traces (they could 
be two different time series or time-delayed versions of the same sample). We have used 
sample sizes larger than 50000 points with 32 bins for MI computations. Details of 
evaluating the PDFs and errors involved in the computations are discussed in Broze 
(1992). 

(ii) Correlation dimension (v): This provides a measure of the attractor geometry. 
The attractor, reconstructed in time-delay coordinates, is displayed in a phase portrait, 
i.e. the graph [u(t), u ( t + ~ ) ] .  For a self-similar object, power law scaling, C(r) N r”, is 
expected, and 

C(r) = lim - 2 O(r-lXi--Xj1), 

where O is the Heaviside function and Y is the radius of a sphere in an m-dimensional 
phase-space (Grassberger & Procaccia 1983). Details of v computation, its validation, 

l N  
N - t  m N 2  i J = I  
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and the choice of the minimum embedding dimension (note that C(r) is evaluated for 
several m) for extracting v are documented in Broze (1992). 

(iii) Largest Lyapunov exponent ( A )  : The exponent quantifies the rate of exponential 
convergence/divergence of trajectories in phase space. A necessary and sufficient 
condition for a system to be chaotic is at least one positive Lyapunov exponent. The 
exponent is given by, 

where d is the distance between two neighbouring trajectories in phase-space. The 
algorithm developed by Wolf ef al. (1985) was used to estimate the largest h (in b.p.0.). 
This h computation requires a priori specification of the range of phase-space scales 
(rrriin and r,,,,,, for C(r)  discussed above); rmi7L and rrrLu,r define the range for which u 
'scales' (i.e. is virtually unchanged with r ) .  Calculation of h was performed separately 
for each such range found (as in 92.1.2). 

Surrogate &fa analyses 
This method provides a means to detect intrinsic nonlinear dynamics in a stationary 

time series (Theiler et a/. 1992). The approach is to specify a well-defined underlying 
linear stochastic process (called the null hypothesis), then generate a surrogate data set 
from this process, which is examined for the quantity of interest, e.g. correlation 
dimension. If this quantity is different from that for the original process then the null 
hypothesis is rejected and the original process is declared to be nonlinear. The 
surrogate data set is generated from the original data set as follows: the Fourier 
transform X ( f )  of the original data is computed from a large window of the data set 
(at least 216 points) to avoid leakage effects from using a rectangular window. The 
transform is then decomposed into an amplitude A ( . f ) ,  and a phase q5(f),  i.e. 
X ( f ' )  = A ( f )  exp (i$(f)). A set of phases $s ( , f )  on the interval [ - n, n] is generated using 
a uniform distribution random number generator and substituted for q5( f ) ,  thus 
producing a surrogate Fourier transform X,s(, f)  = A ( f )  exp (id,( f ) ) .  Now, the inverse 
Fourier transform of X,s( , f )  is computed to yield xs ( f ) ,  the surrogate data set. 

Appendix C. Spectral measures : coherence and cross-bicoherence 
We use coherence y2((f) and cross-bicoherence P2((f,f,,J, ) to identify linear and 

quadratic coupling among a set of frequencies. These measures were used in the studies 
of turbulence in plasmas and for detecting quadratic interactions in transitional shear 
flows (Miksad et al. 1983). The representation of a nonlinear transfer function was 
provided by Ritz & Powers (1 986), and we have used relevant expressions to extract 
coherences, and justify our usage of coherence and cross-bicoherence as measures of 
coupling. The analyses were carried out with a simplified model for the system transfer 
function that is restricted to linear and quadratic interactions. 

a/) -{GE* Y ( f )  

In general, Y ( f )  = H ( , f ) X ( f ) .  which is expanded as, 

Y ( f )  = U f )  X ( f )  + C Qflf2(f) X ( f J  X ( f J  + 4fh (C 1) 
f , f a  

where L ( f )  denotes the linear transfer function, Q f l f z ( f )  denotes the quadratic transfer 
function accounting for interactions among a triad of frequencies (such thatf, +f, = f ) ,  
and t( f )  includes estimation errors (from averaging) and contribution from all higher- 
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order interactions. The summation is over frequencies such thatf, > f Z .  Note that, the 
fourth-order moment (Xul) X ( f z )  X * ( f ; )  X * ( f z ) )  is approximated by ( IX(f l )  X( f , ) I2)  
and Q f l f 2 ( f )  Qfif;* ( f )  = fQflf2df)\' (after averaging over sufficiently large number of 
ensembles), where, * denotes complex conjugate, and f, +yz = f ,  +fz = f .  Such an 
approximation implies that frequencies such thatf, =I= fr andf, + fi are neglected in the 
averaging process. To verify this approximation we performed a few tests (using 50 
ensembles) and found that the magnitude of the fourth-order moment from considering 
(yl,fL) terms are less than 5 %  of that from considering cf,,fz) terms; moreover, the 
cumulative contribution to the fourth-order moment from all pairs of vl,fz) is also less 
than 10% of that from considering (f,,fz) alone. Multiplying (C 1) by its complex 
conjugate, ensemble averaging and dividing throughout by ( 1  Y( f ) l z )  gives, 

(term I) (term 11) 

(term 111) (term IV) 
These represent the linear (I, denoted as riCf)), quadratic (11, denoted as $U)) and 
linear-quadratic coupling (111, denoted as y & ( f ) )  terms, and errors (term IV); L(f) 
and Qfifz(f) are assumed to be uncorrelated with ~ ( f ) .  L ( f )  and Qf l f z ( f )  can be derived 
from (C 1) to be (see Ritz & Powers 1986), 

(C 4) 
Substituting (C 3 )  and (C 4) in (C 2) and neglecting cross-terms involving (Iscf)12) 
provides the following estimates for ri(f) and &(f), 

where rz ( f )  = I( Y ( f ) X * ( f ) ) 1 2 / ( l X ( f )  ') (lY(f)12) (used as coherence in the present 
study). 
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Note that \ ( X * ( f )  X( f , )  X(f,))lz/(lX(f,) X ( f z ) l z )  ( l X ( f ) l z )  (termed auto-bicoher- 
ence) represents quadratic coupling at the input itself. In the absence of such coherent 
triads at the input, i.e. I ( X * ( f )  X ( j ; )  X(f,))l = 0, y i ( f )  and &(f) reduce exactly (to 
within estimation errors) to the expressions for coherence and cross-bicoherence, while 
YiQ( . f )  = 0. 

Significance of coherence and cross-bicoherence 
A high coherence at f ( yz ( f )  z 1) indicates linearity at f (i.e. no phase distortion) 

between the two signals. There are three possible implications of y 2 ( f )  < 1 (Bendat & 
Piersol 1986): (i) measurement noise in the first or the second signal, (ii) an additional 
input, unaccounted for at the first signal, or (iii) system nonlinearity. Cross- 
bicoherence P2(f. f i , fz)  represents the degree of quadratic coupling for a triad of 
frequencies, such thatf, +fi = f .  A P2((f;f,,fg) < 1 indicates weak quadratic interactions 
in between the two signals implying linearity or higher-order nonlinear interactions. 
Computation of $(f) and ~ 2 , ( , f )  involves estimation of auto-bicoherence (found to be 
non-zero in our experiments) and a computationally intensive iterative procedure to 
extract L ( f )  and Q f l f z ( , f )  (Ritz & Powers 1986). However, to detect linear/quadratic 
coupling in the flow, this much detail is unnecessary; thus, we estimated only f ( f )  and 

All spectral quantities, such as autospectra, cross-spectra, and their derivatives, such 
as coherence and cross-bicoherence, were computed on the Masscomp computer using 
averages over at least 80-100 records. Each record, sampled at 2048 Hz, was 2048 
points long. 

P 2 c f , f 1 , f Z ) .  
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